

Maryland Smart Energy Communities

Renewable Energy Assessment Planning and Financing

September 5, 2013 Webinar

Hosted by Doug Hinrichs, MEA and Sean Williamson, UMD-EFC

Please enable your microphone or use the call-in number provided to participate.

Agenda

- Overview of Renewable Energy Assessment Plans (REAPs)
- Sample scenarios and constructing some simple analysis
- Summary of the REAP process and important notes
- Strategies for solar success
 - Siting
 - Sizing
 - Net metering
 - Financing
 - Permitting

Baseline: Precursor to a REAP

Establish renewable baseline

- Measured as kilowatt-hours or megawatt-hours of consumed electricity/year NOT normalized as kWh/gross square foot (Efficiency Policy)
 - E.g. Baseline for renewable goal = 8,280 MWhNOT .012 MWH/gross square foot
- Consumed = purchased electricity + generated electricity

Note about thermal energy

- Thermal energy energy created for heating, not electricity
 - E.g., Geothermal and solar thermal
- Does not count towards baseline, but does count towards target...

REAP – Five Components*

- 1 Letters of approval for REAP from Council
- 2 Executive Summary of baseline, goal, and plans
- 3 Narrative describing energy baseline
- 4 Narrative describing goal, existing RE and plans to expand over coming decade
- 5 References

* These five components are guidelines for how to design and package the REAP. We are very flexible on this point...

In most cases, this is already complete.

Area of focus.

Part 4 – Constructing the REAP

- Step 1: How much RE needs to be generated by 2022?
 - = (.20) x baseline electricity consumption (e.g., 8.28 million kWh)
 - or 1.66 million kWh by 2022
- Step 2: How much RE is currently being generated?
 - Method 1: Use RE generation data, if available
 - Method 2: Use RE capacity data, definitely available
- Step 3: What is the current RE generation shortfall?
 - = required generation existing generation or the amount of additional generation that needs to occur

NOTE:

Capacity refers to power and is expressed as kW

Generation refers to energy and is expressed as kWh

Sample analysis

Baseline (kWh per year)	423,982				
20 % (kWh per year)	84,796				
Existing solar PV capacity (kW)	3.5				
Estimated energy generation (kWh per year, or kW x 1,227 hrs/year)*	4,294				
Shortfall in annual generation (kWh)	~80,500				
Option 1 for new RE capacity: All solar PV (kW installed)	65.6				
Option 2 for new RE capacity: Solar PV + geothermal heating and cooling system	14 kW solar + 10 ton GH&C				
Multiple options depending on what suits your community					

^{*} MEA has a renewable energy analysis sheet available with agreed upon capacity factors.

Constructing the REAP

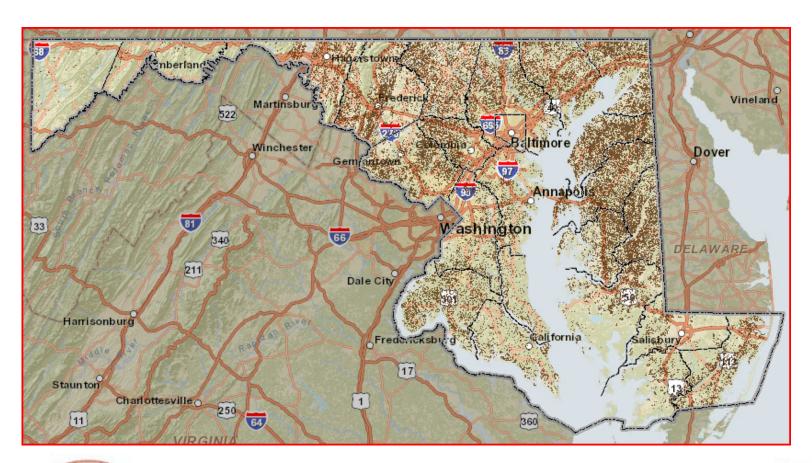
- Step 4: Matching RE technology with your community:
 - What type of RE is your community interested in?
 - How much space is available and where?
 - Consider "responsible siting" on parking lots, Brownfields, landfills, and wastewater treatment plants.
 - What is the most cost effective technology given this context?
- Step 5: Assessing locations, project specifications, and economics:
 - Examine what a given technology and a specific location would yield in terms of project size (capacity) and cost.
 - Compare and aggregate projects.

Finalizing the REAP

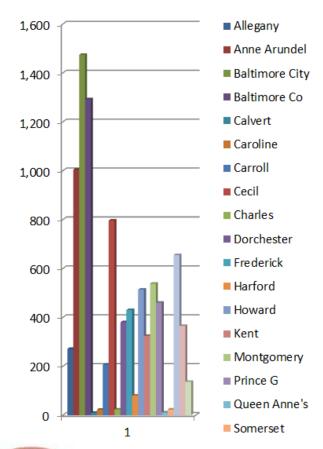
Step 6: Demonstrate planned projects will achieve target

Project Name	Energy Technology	Annual Gen.	Year of Install.	Cost	Financing
Rec Center GH&C	10 ton geothermal	~65,000 kWh	2014	\$40,000	MSEC Grant and General Fund
Town Hall Solar	14 kW solar	~17,000 kWh	2017	\$61,000	PPA
Police Dept. Solar	3.5 kW solar	~4,000 kWh	2012	Existing	Existing

All projects total \sim 86,000 kWh of annual generation, which is greater than 20% of baseline = \sim 85,000 kWh


Summary and Important Notes

- We are very flexible about how communities package and design their planning documents. This presentation and the guidance documents serve mostly as a template.
- We are looking for a few key components though:
 - Some thoughtful, quantitative analysis about how much RE is needed
 - Consideration of locations where RE might go and system specs
 - Implementation pieces such as financing ideas and staff responsibilities
 - Approval from an executive strengthens the plan
- We recognize communities will not have all project details at this point and commitment to specific projects is difficult. TBD is acceptable...
 - As a guiding principle, the more effort and collaboration put into the planning, the better the chances of meeting the goals. We want communities to meet the goals.
- Treat the action plan as a living document that will be updated when more information is available in future years while making a good-faith effort now.


Strategies for Solar Success: Siting

Strategies for Solar Success: Siting

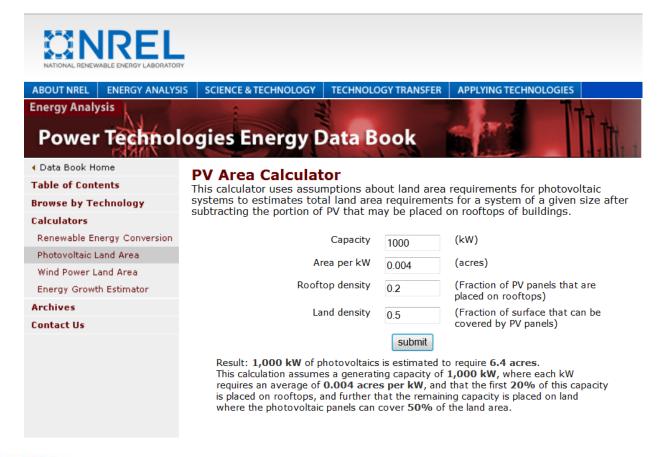


Strategies for Solar Success: Sizing

Click on the site where you want to use PVWATTS to calculate the electrical energy produced. Choose the site nearest to your location that has similar topography. If near a state border, you may wish to review site locations in the adjacent state.

Maryland

5,000 m / 16,404 ft
2,000 m / 6,562 ft
1,000 m / 3,281 ft
500 m / 1,400 ft
200 m / 656 ft


http://maps.nrel.gov/imby

http://rredc.nrel.gov/solar/calculators/PVWATTS/version1/US/Maryland/Baltimore.html

Strategies for Success: Sizing

Strategies for Success: Net metering

Your bi-directional meter will continue to be read once each month. The meter measures the energy generated by your solar system and the energy consumed by you over a month's time, and will display the net difference. Over a year, your energy usage totals may look something like the example below.

Relevant Period: August t	to Julv
---------------------------	---------

Month 1	Month 2	Month 3	Month 4	Month 5	Month 6	Month 7	Month 8	Month 9	Month 10	Month 11	Month 12
(Aug)	(Sept)	(Oct)	(Nov)	(Dec)	(Jan)	(Feb)	(Mar)	(Apr)	(May)	(June)	(July)
Generated	Generated	Generated	Generated	Generated	Generated	Generated	Generated	Generated	Generated	Generated	Generated
550 kWh	520 kWh	420 kWh	200 kWh	155 kWh	190 kWh	185 kWh	215 kWh	395 kWh	410 kWh	465 kWh	550 kWh
Consumed	Consumed	Consumed	Consumed	Consumed	Consumed	Consumed	Consumed	Consumed	Consumed	Consumed	Consumed
500 kWh	510 kWh	500 kWh	400 kWh	475 kWh	415 kWh	395 kWh	405 kWh	420 kWh	405 kWh	410 kWh	525 kWh
Energy Charges = - 50 kWh (energy usage credit)	Energy Charges = - 10 kWh (energy usage credit)	Energy Charges = 80 kWh (energy usage charge)	Energy Charges = 200 kWh (energy usage charge)	Energy Charges = 320 kWh (energy usage charge)	Energy Charges = 225 kWh (energy usage charge)	Energy Charges = 210 kWh (energy usage charge)	Energy Charges = 190 kWh (energy usage charge)	Energy Charges = 25 kWh (energy usage charge)	Energy Charges = -5 kWh (energy usage credit)	Energy Charges = -55 kWh (energy usage credit)	Energy Charges = -25 kWh (energy usage credit)

This customer's annual energy bill will be tallied as follows= $(50) + (10) + 80 + 200 + 320 + 225 + 210 + 190 + 25 + (5) + (55) + (25) \times 200 +$

- 2 MW cap for PV system
- PV energy offsets grid power, at full retail electricity rates
- In some months, a PV generator may produce more electricity than building can use, creating "net excess generation" (NEG)
- Compensation for NEG remaining in a customer's account after a 12-month period ending in April is paid to the customer at the commodity energy supply rate

- Costs
 - \$2,200-2,600/kW (total installed cost)
 - \square 250 kW x \$2,400/kW (avg.) = \$600,000
 - Land/rooftop lease?
- Revenues
 - Sale of solar energy
 - If net metered, full retail offset of, e.g., 8-12 cents/kWh
 - MD SRECs
 - Currently, 34% of SACP

- Power Purchase Agreements (PPAs)
 - Allows local governments (which don't pay taxes) to partner with solar developers to take advantage of Federal tax credits, reduce risk, etc.
 - No upfront capital cost to local government
 - No system performance risk or operating risk for local government
 - Developer can take advantage of Federal ITC (30%) and MACRS (20%)
 - Predictable energy pricing for 20+ years

NMWDA

George Carver Washington

Talbot County Community Center

Coppin State University

Back River WWTP

Frederick County Oakdale High

Solar Project Assumptions

Total System Size:	100	kW DC
		See costs
Installation Type:	Ground Mount	at right
Total Project Cost:	\$3.00	\$/Watt
Estimated System Production:	132,000	kWh/Year
Federal Tax Rate:	35.0%	
State Tax Rate:	5.5%	
Land Cost:	\$0	
Land Lease Cost:	\$0	\$ / Year
		\$ / kW DC /
O&M, Asset Management, Insurance Cost	\$24	Year
O&M, Asset Managment, Insurance Escalator	3.0%	
		\$/kW DC/
Inverter Reserve / Soft Cost Contingency	\$12	Year
System Degredation Factor	0.5%	
System Installation Year	2013	
Electricity Offset Rate / PPA Rate	\$0.095	\$/kWh
Electricity Escalator	1.0%	
SREC % ACP	30.0%	
Investment Tax Credit:	30.0%	
Total Project Basis for Depreciation:	\$255,000	
Total Cash Benefit From Depeciation:	\$103,275	

kW Installed	100	2,000	Final Cost
Ground Mount	\$3.00	\$2.55	\$3.00
Roof Mount	\$3.10	\$2.65	\$3.10
Parking Canopy	\$3.50	\$3.00	\$3.50

Electri	Year	Annual
c Rate		Electricity
with		Generation
Escala		(kVh)
tor		
\$0.0950	2013	132,000
\$0.0960	2014	131,340
\$0.0969	2015	130,683
\$0.0979	2016	130,030
\$0.0989	2017	129,380
\$0.0998	2018	128,733
\$0.1008	2019	128,089
\$0.1019	2020	127,448
\$0.1029	2021	126,811
\$0.1039	2022	128,177
\$0.1049	2023	125,547
\$0.1060	2024	124, 919
\$0.1070	2025	124,294
\$0.1081	2026	123,673
\$0.1092	2027	123,054
\$0.1103	2028	122,439
\$0.1114	2029	121,827
\$0.1125	2030	121,218
\$0.1136	2031	120,612
\$0.1148	2032	120,009
\$0.1159	2033	118,409
\$0.1171	2034	118,812
\$0.1182	2035	118,217
\$0.1194	2036	117,626
\$0.1206	2037	117,038
\$0.1218	2038	116,453

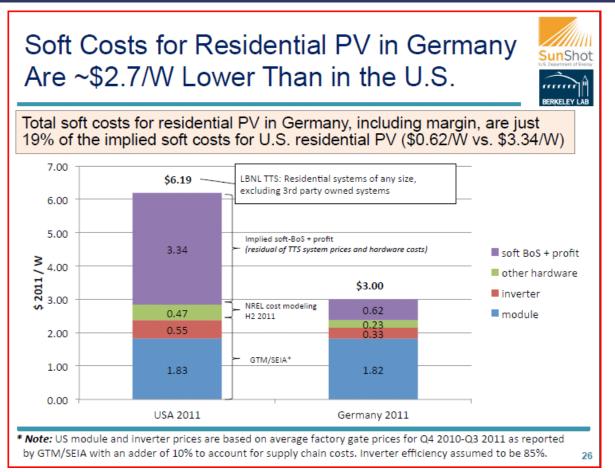
	Annual Cash Flow										
		Systen	n Revenues					System Costs			
Electricity Revenue	SACP Schedule	SACP %	SRECS Revenue s	MEA Clean Energy	MEA Production Tax Credit	Federal ITC Cash Benefit	Federal MACRS Depreciation	O&M, Asset Mgt, Insurance	Inverter Reserve, Soft Costs	Land / Lease Expense	Total Annual Cash Flow
\$12,540	\$400	30.0%	\$15,840	\$13,500	\$1,122	\$90,000	\$36,146	(\$2,400)	(\$1,200)	\$0	\$165,949
\$12,602	\$400	30.0%	\$15,761		\$1,116		\$26,852	(\$2,472)	(\$1,200)	\$0	\$53,059
\$12,664	\$350	30.0%	\$13,722		\$1,111		\$16,111	(\$2,546)	(\$1,200)	\$0	\$40,212
\$12,727	\$350°	30.0%	\$13,653		\$1,105		\$11,371	(\$2,623)	(\$1,200)	\$0	\$35,384
\$12,790	\$200	30.0%	\$7,763		\$1,100		\$11,371	(\$2,701)	(\$1,200)	\$0	\$29,322
\$12,853	\$200	30.0%	\$7,724				\$1,425	(\$2,782)	(\$1,200)	\$0	\$18,221
\$12,917	\$150	30.0%	\$5,764					(\$2,866)	(\$1,200)	\$0	\$14,766
\$12,981	\$150	30.0%	\$5,735					(\$2,952)	(\$1,200)	\$0	\$14,715
\$13,045	\$100	30.0%	\$3,804					(\$3,040)	(\$1,200)	\$0	\$12,710
\$13,110	\$100	max	\$3,785					(\$3,131)	(\$1,200)	\$0	\$12,664
\$13,175	\$50°	30.0%	\$1,883					(\$3,225)	(\$1,200)	\$0	\$10,683
\$13,240	\$50	mac	\$1,874					(\$3,322)	(\$1,200)	\$0	\$10,642
\$13,305	\$50°	30.0%	\$1,864					(\$3,422)	(\$1,200)	\$0	\$10,598
\$13,371	\$50	30.0%	\$1,855					(\$3,524)	(\$1,200)	\$0	\$10,552
\$13,438	\$50	30.0%	\$1,846					(\$3,630)	(\$1,200)	\$0	\$10,503
\$13,504	\$50	30.0%	\$1,837					(\$3,739)	(\$1,200)	\$0	\$10,452
\$13,571	\$50	max	\$1,827					(\$3,851)	(\$1,200)	\$0	\$10,397
\$13,638	\$50°	30.0%	\$1,818					(\$3,967)	(\$1,200)	\$0	\$10,340
\$13,706	\$50	mac	\$1,809					(\$4,086)	(\$1,200)	\$0	\$10,279
\$13,773	\$50	30.0%	\$1,800					(\$4,208)	(\$1,200)	\$0	\$10,215
\$13,842	\$50	30.0%	\$1,791					(\$4,335)	(\$1,200)	\$0	\$10,148
\$13,910	\$50	30.0%	\$1,782		·			(\$4,465)	(\$1,200)	\$0	\$10,078
\$13,979	\$50	30.0%	\$1,773					(\$4,599)	(\$1,200)	\$0	\$10,004
\$14,048	\$50	30.0%	\$1,764					(\$4,737)	(\$1,200)	\$0	\$9,926
\$14,118	\$50	30.0%	\$1,756					(\$4,879)	(\$1,200)	\$0	\$9,845
\$14,188	\$50	30.0%	\$1,747					(\$5,025)	(\$1,200)	\$0	\$9,760

Total Inves	\$300,000		
Federal	State Tax	Total	Cumulativ
Tax Paid	Paid	Annual	e Cash
		Cash Flow	Flow (Post
(\$13,791)	(\$1,363)	\$150,795	\$150,795
(\$9,033)	(\$1,358)	\$42,669	\$193,463
(\$8,313)	(\$1,245)	\$30,654	\$224,118
(\$8,282)	(\$1,241)	\$25,861	\$249,979
(\$6,213)	(\$916)	\$22,193	\$272,172
(\$5,808)	(\$913)	\$11,500	\$283,672
(\$5,115)	(\$804)	\$8,846	\$292,518
(\$5,098)	(\$801)	\$8,816	\$301,334
(\$4,413)	(\$694)	\$7,603	\$308,937
(\$4,397)	(\$691)	\$7,576	\$316,513
(\$3,721)	(\$585)	\$6,377	\$322,890
(\$3,707)	(\$583)	\$6,352	\$329,242
(\$3,692)	(\$580)	\$6,326	\$335,568
(\$3,676)	(\$578)	\$6,299	\$341,867
(\$3,659)	(\$575)	\$6,270	\$348,137
(\$3,641)	(\$572)	\$6,239	\$354,376
(\$3,621)	(\$569)	\$6,207	\$360,583
(\$3,601)	(\$566)	\$6,173	\$366,756
(\$3,580)	(\$563)	\$6,137	\$372,892
(\$3,558)	(\$559)	\$6,099	\$378,991
(\$3,534)	(\$555)	\$6,059	\$385,049
(\$3,510)	(\$552)	\$6,017	\$391,066
(\$3,484)	(\$547)	\$5,973	\$397,039
(\$3,457)	(\$543)	\$5,926	\$402,965
(\$3,428)	(\$539)	\$5,878	\$408,843
(\$3,398)	(\$534)	\$5.827	\$414,671

Variables are noted with blue text and highlighted

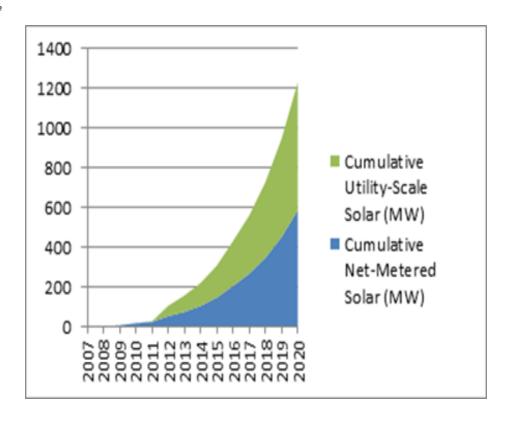
Costs do not include cost of capital.

SREC prices are only estimates.


Model does not include cost for decommissioning at end of life

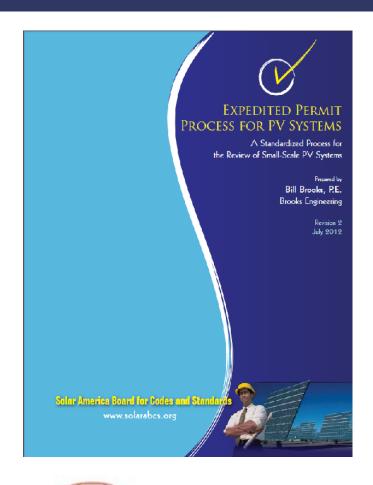
Federal Tax is paid on Electricity, SREC, State Grants/Incentives, State Tax is paid on Electricity, SREC

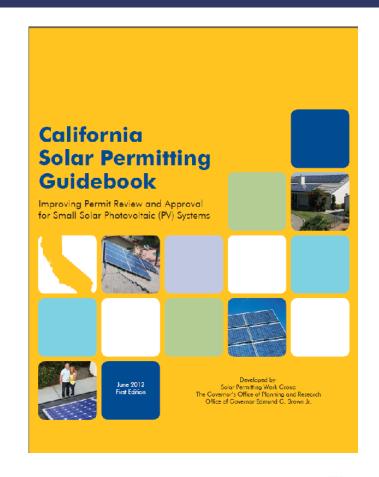
This entire spreadsheet is for educational purposes only. MEA cannot be held responsible for any assumptions, calculations, or estimates



For Electrical permits, a Diamond symbol (♠) indicates permits are only needed if new wiring is required.

Talbot County (♠) does not require a Plumbing permit for Solar Water Heating, but does require a Zoning Certificate


Baltimore County (♠) requires a Building Permit for PV projects over 10 kW


	butting county (=) requires a building termit of 17 projects over 10 km								
		rmal Heat	Pump		otovoltaic	Solar			
County	HVAC/Mech.	Electrical	Well	Building	Electrical	Building	Electrical	Plumbing	
Allegany			>						
Anne Arundel	✓	•	✓	✓	✓	✓	•	✓	
Baltimore City	✓	•	>	\	✓	\	•	✓	
Baltimore County		✓	✓		✓	✓	•	✓	
Calvert		•	>	✓	✓			✓	
Caroline			>	\	✓			✓	
Carroll	✓	✓	\	✓	✓	✓	•	✓	
Cecil	✓	✓	>	\	✓	>	•	✓	
Charles	✓	•	\	✓	✓			✓	
Dorchester	✓	•	✓	✓	✓	✓		✓	
Frederick		•	✓	✓	✓	✓		✓	
Garrett			✓		✓				
Harford	✓	•	✓	✓	✓		•	✓	
Howard	✓	✓	✓	✓	✓	✓		✓	
Kent		•	\	\	✓			✓	
Montgomery	✓	✓	✓	✓	✓	✓	•	✓	
Prince George's	✓	•	>	\	\	>	•	✓	
Queen Anne's	✓	•	✓	✓	✓			✓	
Somerset		•	>	\	✓			✓	
St. Mary's		•	✓	✓	✓			✓	
Talbot	✓	•	\	\	✓			•	
Washington	✓	•	>	\	✓	>		✓	
Wicomico		•	>	\	✓	\		✓	
Worcester		•	>	\	✓	>		✓	

